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ABSTRACT
Deep learning has recently become a key methodology for the study
and interpretation of cancer histology images. The ability of con-
volutional neural networks (CNNs) to automatically learn features
from raw data without the need for pathologist expert knowledge,
as well as the availability of annotated histopathology datasets, have
contributed to a growing interest in deep learning applications to
histopathology. In clinical practice for cancer, histopathological
images have been commonly used for diagnosis, prognosis, and
treatment. Recently, molecular subtype classification has gained
significant attention for predicting standard chemotherapy’s out-
comes and creating personalized targeted cancer therapy. Genomic
profiles, especially gene expression data, are mostly used for molec-
ular subtyping. In this study, we developed a novel, PanCancer CNN
model based on Google Inception V3 transfer learning to classify
molecular subtypes using histopathological images. We used 22,484
Haemotoxylin and Eosin (H&E) slides from 32 cancer types pro-
vided by The Cancer Genome Atlas (TCGA) to train and evaluate
the model. We showed that by employing deep learning, H&E slides
can be used for classification of molecular subtypes of solid tumor
samples with the high area under curves (AUCs) (micro-average=
0.90; macro-average=0.90). In cancer studies, combining histopatho-
logical images with genomic data has rarely been explored. We
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investigated the relationship between features extracted from H&E
images and features extracted from gene expression profiles. We
observed that the features from these two different modalities (H&E
images and gene expression values) for molecular subtyping are
highly correlated. We, therefore, developed an integrative deep
learning model that combines histological images and gene ex-
pression profiles. We showed that the integrative model improves
the overall performance of the molecular subtypes classification
((AUCs) micro-average= 0.99; macro-average=0.97). These results
show that integrating H&E images and gene expression profiles
can enhance accuracy of molecular subtype classification.
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1 INTRODUCTION
Histological images confer important information for the assess-
ment of disease. Histology slides contain rich phenotypic infor-
mation for cancer diagnosis and prognosis and are widely used
by pathologists. However, cancer is a heterogeneous disease, and
heterogeneity in cancer is not only limited to the differences among
different patients but often occurs within a single patient. This inter-
patient and intertumoral heterogeneity may pose major challenges,
leading to inconsistencies in diagnosis [1–3, 11].

In addition to histopathologic images, molecular features such
as genetic changes and signatures of gene expression are now
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commonly used for the prediction of clinical cancer outcomes. Af-
ter the advent of microarray analysis, many studies established a
comprehensive molecular classification of cancer using genomic
data. These studies have confirmed that cancers can be catego-
rized into molecular subtypes based on distinct genomic profiles
[18, 20, 23, 24, 33]. Such molecular subgroups have been correlated
with various outcomes of the disease, indicating a biological basis
behind the clinical cancer heterogeneity. Molecular subtype classi-
fication will allow us to predict standard chemotherapy outcomes
and select personalized targeted cancer drugs therapy. Increased
knowledge of the molecular subtypes of the different cancer types
will shape the future of cancer diagnosis, prognosis, and treatment.
In [19], using mRNA expression profile analysis, six robust molec-
ular subtypes of colon cancer are identified via distinct biological
pathways and reflect new subgroups of prognoses. These gene
signatures represent the molecular heterogeneity of colon cancer.
Consecutively, this classification leads to recognizing specific and
potentially targeted markers for the different subtypes. Another
study uses colorectal cancer tumors from three independent cohorts
using transcriptomics data to identify colorectal cancer molecular
subtypes [4]. Their results show that identified molecular subtypes
are highly correlated with microenvironmental signatures. Further-
more, many microarray studies have identified different molecular
subtypes of breast cancer. In [17], using the genomic grade (a tumor
description focused on how cancer cells and tissues appear under
a microscope and how rapidly cancer cells are likely to develop
and spread), two clinically distinct estrogen receptor (ER)-positive
molecular subtypes are identified. Using gene expression microar-
rays from patients with triple-negative breast cancer (TNBC), the
authors in [31] identified seven molecular subtypes that predict
high versus low pathologic complete response (pCR) rates after
neoadjuvant chemotherapy. Classification of the subtype will in-
spire novel personalized medicine approaches for TNBC patients.

Advances in machine learning techniques and image process-
ing, and the availability of large-scale whole-slide histology image
databases have led to the development of complex deep learning
models in computational pathology [8, 15, 16, 25, 31]. Compared
with human inspection, there is tremendous potential for comput-
erized image processing to increase performance, accuracy, and
consistency in the diagnosis and prognosis. Computational histo-
logical image analysis has been quite promising for diagnosis and
biomarker discovery in several cancer types [5, 6, 10, 22, 32, 34–36].
Computational histopathological analysis can identify candidate
regions that require more diagnosis evaluation and so can be used
in the prognosis of various cancer types [5, 26–28, 34]. Many stud-
ies showed that CNNs outperform conventional machine learning
approaches for classifying high-resolution images [7, 8, 14]. Also,
compared to conventional classification approaches that rely on
feature extraction methods, the CNN approaches for classifying his-
tological images reduce the need for extensive domain knowledge
from the machine learning expert, as the network learns all relevant
features by itself when sufficient data is available [2, 9, 13, 21, 29].

The Cancer Genome Atlas (TCGA) provides a comprehensive set
of genomic data for a large population of patients arising from 33
types of cancer and their matched histopathological images for solid
tumor samples. Therefore, using these huge data sets, TCGA is able

to help studies to find the relationship between morphological and
genomic features, which is an important scientific problem. Using
the complete set of tumors in TCGA, a comprehensive integrative
molecular analysis was conducted to provide a first systematic
view of the molecular factors that differentiate the various neo-
plasms [12]. This PanCancer study included 11,286 tumor samples
of 33 types of cancer for which molecular data are available from
multiple assay platforms. Using iCluster [30], they identified 28
molecular subtypes and associated them to histological subtypes.
This study applied the hierarchical clustering of tumor samples
using chromosome arm-level aneuploidy, DNA hypermethylation,
microRNA, and Protein to identify 10, 25, 15 and, 8 molecular sub-
types, respectively. Also, it uses unsupervised consensus clustering
of tumor samples by mRNA expression data to identify 25 molec-
ular subtypes. Then, the clustering of cluster assignment (COCA)
algorithm was used to determine the overlap of platform-specific
memberships of each of the five molecular platforms to identify the
final 28 molecular subtypes.

In this work, we present a new PanCancer classification of tumor
histological images using deep learning to predict molecular sub-
types of different samples. We used whole-slide hematoxylin and
eosin (H&E) images of solid tumors from TCGA that are labeled
by the identified molecular subtypes from the integrative analyses
introduced in [12]. We employed transfer learning to the Google
Inception V3 model by modifying its last layer to classify H&E
images and predict molecular subtypes status. Also, we embedded
high dimensional RNA-Seq data into 2-D images and developed
an integrative deep learning framework to classify TCGA samples
according to their molecular subtypes. Extracted features from the
H&E images and gene expression profiles are the inputs of this
integrative model. Using our integrative model, we provide new
insights into the relationship between cancer tissue morphology
and gene expression.

2 DATASETS
Our PanCancer study includes 22,484 H&E-stained whole-slide im-
ages and the matched normalized-level 3 RNA-Seq gene expression
data from 9,383 solid tumor samples that were directly downloaded
from the TCGA portal.

For whole-slide images, we used SVS files from primary solid
tumors with 20X and 40X magnification and resized the 40X images
to 20X. We assigned 70% of the slides to the training set and 30% of
them to the test set. We applied the method in [37] to remove the
background from the SVS files. The whole-slide images are very
large (ranging from 15,000 to 100,000 pixels in width and height)
compared to the practically feasible dimensions of the CNN. As a
result, we partitioned images into non-overlapping tiles of 512×512
pixels. Overall, we generated 40,994,742 tiles from 22,484 H&E
slides for 32 types of cancer. Also, we downloaded RNAseq gene
expression data of the 32 cancer types from TCGA PanCancer Atlas.
The data was preprocessed by log-transformation of expression
values, and genes that have no expression values across all the
samples were removed. After preprocessing, we sorted the genes by
variance and kept the top 10,000 genes with the highest variances.
We then reshaped this vector of size 10,000 into a 100×100 pixel
2D image where the order of genes in the original vector was
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Figure 1: Molecular subtype classification pipeline using transfer learning and histological images. The proposed CNNmodel
classifies histological slides from TCGA by molecular subtypes status. The extracted features from pre-trained Inception V3
are fed into a dense layer with 1024 neurons.
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Figure 2: Integrative workflow for molecular subtypes classification using histological images and gene expression profiles.
The image features are extracted from histological images using a pre-trained Inception V3, Z-score module, and a dense
layer ( block A). The genomic features are extracted using a CNN model with three convolutional layers and one dense layer
(block B). The extracted features from images and genes are integrated together and trained using a dense layer to predict the
molecular subtypes of samples (block C).
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preserved in a row-by-row manner. Therefore, each sample has one
image of gene expression values. The gene expression images were
normalized to make sure the range is between 0 and 255.

We labeled gene expression images and histological slides/tiles
using molecular subtypes labels of the samples from the integrative
analysis in [12].

3 METHODS
In this section, first, we describe the implementation of the CNN
architecture used for analyzing the H&E slides for molecular sub-
type classification. Then, we introduce an integrative framework
that inputs image features from H&E images and gene expression
features from RNAseq data to predict patient molecular subtype
status.

3.1 CNN model for molecular subtyping using
H&E images

In this section, we describe the CNN architecture we developed to
analyze the H&E slides from TCGA for molecular subtype classifica-
tion. Training a complex CNN model for analyzing high-resolution
images is a time-consuming task. One way to shorten the train-
ing time is to use transfer learning. Transfer learning reuses the
weights (parameters) from a pre-trained model on another dataset
(e.g., ImageNet for image recognition tasks) and only retains one
or few final layers on the new dataset of interest. Also, training
a complex CNN model with many layers from scratch requires
the availability of many training samples. Well-annotated training
datasets are difficult and costly to obtain, especially in the medical
imaging domain. Extracting features using a pre-trained network,
rather than learning the features from scratch, is a common practice
in the medical imaging domain. As a result, transfer learning has
been widely used in digital pathology [31].

In this study for molecular subtype classification using H&E
slides, we implemented a CNN architecture based on the Google
Inception V3 model. We used the exact structure as the Inception
V3 model and only deleted the last layer (the classification layer).
We used transfer learning and froze all the parameters of the pre-
trained Inception V3 model. Fully training is computationally very
expensive hence we only relied on transfer learning [22]. As shown
in Figure 1, the generated 512×512 pixel tiles are inputs to the Incep-
tion V3 network in a forward pass, and we stored the values of the
last fully connected layer as vectors of 2,048 floating-point values.
We shuffled the stored vectors from a similar holdout group and
assigned them to TFRecords in groups of 10,000. Theses TFRecords
were used as inputs to a fully connected layer with 1024 neurons,
and its output was encoded to a one-hot-encoded vector. We ran
100,000 iterations for each training simulation in batches of 512 sam-
ples, with a 20% dropout. We used the cross-entropy loss function,
and Adam optimizer with the learning rate of 0.01 to update the pa-
rameters. A SoftMax function was used to derive class probabilities.

Figure 3: The heatmap of extracted features from H&E
images and gene expression data. Two feature vectors are
highly correlated.

3.2 Integrative model for molecular subtype
classification using H&E images and
expression profiles

We developed an integrative model that combines the extracted
features from the H&E images using the Inception V3 network
and gene expression features from another CNN model to identify
molecular subtype status of solid tumors (Figure 1). Our integrative
model is divided into three blocks: H&E images feature extraction
(block A), gene expression data feature extraction (block B), and
integrative classifier network (block C).

As shown in Figure 2 (block A), the output of the last fully
connected layer of Inception V3 (with 2,048 neurons) is fed to the
Z-score module. The hypothesis behind Z-score is to describe any
data points by finding out how they relate to the standard deviation
and mean of the data points’ group. By calculating the Z-score (
Z = (x − µ)/σ , where x is an extracted feature vector of a tile, and
µ and σ are the mean and standard deviation of features across
the corresponding slide), we looked for tiles where their extracted
features are close to the mean of the distribution of all tiles’ features
of a slide. We kept only three tiles from each slide that have the
smallest absolute Z-score for their extracted features. Then we
calculated the mean of the features of the three tiles to have one
vector of 2,048 floating-point values as a feature vector for each
sample. The samples’ feature vectors of size 2048 are the inputs of
another fully connected layer that has 512 neurons in its output.
Therefore, at the end for each sample, we have a vector of size 512
as its extracted H&E image features.

We also extracted features from gene expression data using a
CNN network, as shown in Figure 2, block B. The CNN consists of
three convolutional layers and one dense layer. We used the cross-
entropy loss function, and Adam optimizer with the learning rate of
0.001 to update the parameters. The first convolutional layer has 32
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Figure 4: AUCs for a) per-tile analysis, b) per-slide analysis c) per-patient analysis, using histological images for all predicted
classes.
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Figure 5: Confusion Matrix from per-patient analysis from
the SoftMax of the image classification model.

filters, while the second and third layers have 64 filters, respectively.
The size of the filters is 3 × 3. Each convolutional layer is followed
by a max-pooling layer and a ReLU activation layer. Following the
convolutional layers is a flatten layer and a dropout layer with a
dropout rate of 0.2. We then added one dense layer that its output

layer has 512 neurons. Therefore, for each sample, we have a vector
of 512 floating-point values as its genomic features.

Then as can be seen in Figure 2, block C, we calculated the aver-
age between image features and genomic features of each sample.
Doing this for each sample, we obtained a vector of 512 floating-
point values as its final integrative extracted features. We then
added one dense layer with a size of 512. For this dense layer, we
used the cross-entropy loss function, and Adam optimizer with the
learning rate of 0.01 to update the parameters. The output layer has
27 neurons, which are activated by the SoftMax function.

3.3 Relationship between H&E image features
and gene expression features

Using a correlation coefficients matrix between H&E image features
from the Inception V3 model and gene expression features from the
CNN, we observed that they are correlated. The heatmap of Pearson
product-moment correlation coefficients, Ri j is shown in Figure
3 (Ri j = Ci j/

√
Cii ×Cj j , where C is the covariance between the

image features from Inception V3 and the gene expression features
from the CNN). The high correlations between H&E image features
and gene expression features suggest that, as well as genomic data,
H&E images can also be used for molecular subtyping. We will
show that despite this high correlation, integrating H&E images
and genomic data can improve molecular subtype classification
indicating that both images and genes can contribute to identify
molecular subtypes.
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Figure 6: AUCs for molecular subtypes classification using the integrative model and the image classification model.
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Figure 7: ConfusionMatrix from the SoftMax of the integra-
tive model.

3.4 Programming details
All codes are written with Python, and the neural network archi-
tectures are implemented with TensorFlow. All transfer learning
analysis was performed on the Google Cloud Platform (GCP). We
used Kubernetes, Datastore, Cloud Storage, and Pub/sub on GCP
and up to 1000 compute instances (each 16 vCPUs and 60GB mem-
ory) and up to 4000 Kubernetes pods.

4 RESULTS
4.1 Classification using H&E images
As we discussed in the previous section, we applied our CNN algo-
rithm to classify tumor slides according to their molecular subtypes
using H&E slide images. We calculated the per-tile classification
receiver operating characteristics (ROCs) based on thresholding

SoftMax probabilities (Figure 4 (a)). To obtain the molecular sub-
type prediction per slide, for each slide, we calculated means of the
tile-level SoftMax probabilities for all classes. We assigned a class to
each slide based on the maximum value of the means of the SoftMax
probabilities. Using these per-slide predictions, we calculated ROCs
for per-slide classification (Figure 4 (b)). Since each patient has mul-
tiple slides, we followed the same approach in per slide prediction
for deriving the label of patients from slide-level analysis (figure
4 (c)). Calculating the area under the curve (AUC) of ROCs (one
versus all other classes), we can see that the proposed CNN model
accurately classifies the tiles for most molecular subtypes (AUC
micro-average = 0.83 ; macro-average = 0.82) (Figure 4 (a)). We also
calculated AUC for per-slide and per-patient analysis. As you can
see in Figures 4 (b) and 4 (c), the CNN model yielded a very high
accuracy for slide-level (AUC micro-average = 0.90 ; macro-average
= 0.90), and patient-level classification (AUC micro-average = 0.90 ;
macro-average = 0.90). The improved classification accuracy from
the aggregations at the slide level or patient-level compared to
the tile-level is expected, since our subtype annotations are from
bulk measurements, and we do not have annotations at the tile
level. Some tiles can belong to not cancer cell areas, resulting in
misclassification at the tile level. As you can see in Figure 4, in most
cases, the proposed algorithm can correctly classify the molecular
subtypes.

The confusion matrix shows the relationships between different
classes and how errors are distributed. From patient-level confusion
matrix (Figure 5), we can see most classes are classified correctly.
The confusion matrix indicates that those classes with lower AUC
are falsely classified to another class (Figures 4 and 5).

The prediction accuracies are variable across molecular subtypes.
This is partially due to sample sizes as the molecular subtypes with
higher AUCs have more histological images. Also, tumors origi-
nating from the same organ tend to belong to the same molecular
subtype. Whereas classes with lower AUC values tend to be hetero-
geneous in cancer types or tissue of origin.
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4.2 Classification using H&E images and gene
expression

We calculated AUCs for the classification of solid tumor samples ac-
cording to their molecular subtypes using our developed integrative
model. As we discussed before, these molecular subtypes arising
from the 33 different tumor types analyzed across at least four dif-
ferent TCGA platforms that assayed tumor DNA (DNAmethylation
and copy number), and RNA (mRNA and microRNA sequencing)
[35]. As we expected, adding genomic data and integrating them
with histological images leads to higher AUCs formost of the classes
(AUC micro-average= 0.99; macro-average=0.97) (Figure 6). Figures
6 and 7 show that our integrative approach yielded more accurate
classification results for all classes. In Figure 6, we see that for the
integrative model, all classes have a higher AUC compared to the
H&E image classification model. In Figure 7, the confusion matrix
shows that most classes are classified correctly when we use our
developed integrative model.

5 CONCLUSION
Pathologists analysis and interpretation of tissue sections stained
with H&E is an important component of disease evaluation. The
phenotypic information found in histology slides can be used for
prognosis as well as providing diagnostic information. Automated
computational histopathological imaging systems have shown great
promise in the detection and identification of new cancer biomark-
ers for these large data. The CNN-based deep learning approaches
significantly outperform other conventional approaches in a va-
riety of tasks in digital pathology. Also, TCGA project offers a
comprehensive set of genomics and clinical outcome data for large
populations of patients with more than 30 types of cancer and a
large collection of related histopathological images for solid tumor
samples. Using these comprehensive datasets and a transfer learn-
ing technique, we implemented a PanCancer molecular subtype
classification of TCGA H&E slides.

We applied the Inception V3 CNN to histopathological images
of 32 cancer types and predicted their molecular subtype class as
defined in [12], and were able to classify images with very high
accuracies (micro-average= 0.90; macro-average=0.90). Our results
show that imaging data is highly predictive of molecular subtypes
and suggests that these two data modalities are highly correlated.
To directly assess the associations between imaging and molecu-
lar subtypes, we independently trained a second neural network
only on gene expression data and used it as a feature extractor for
comparison to image features derived from the final layer of the
Inception model. We found that the genomic features are highly cor-
related with image features, suggesting that these two data modality
are highly interchangeable for representing molecular subtypes.

To determine if the extracted features combined are more predic-
tive of molecular subtypes, we constructed an integrative model by
averaging genomic and image features and classifying them using
a single dense layer. Our model was able to classify samples with
a very high accuracy (micro-average= 0.99; macro-average=0.97).
This result suggests that integration of the two data modalities after
an initial embedding provides higher classification accuracies.

In this PanCancer study histology images and gene expression
of 9,383 solid tumor samples from 32 cancer types were analyzed

and embedded into a low-dimentional space to predict their cor-
responding molecular subtypes. Further studies to determine the
associations between these features and clinical data may provide
new opportunities for extracting PanCancer biomarkers indepen-
dent of cancer type.
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