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Abstract—Deep learning models are extensively used for
analyzing hematoxylin and eosin stained whole slide images.
They enjoy high prediction accuracies, but may suffer large
performance drops when applied to out-of-sample data. Here
we systematically investigate how resolution differences between
train and test sets may affect lung cancer subtype predictions
from whole slide images using a transfer learning model based
on the Inception V3 network. We observe models trained on
blurred images perform well when applied to test sets with similar
blurrings, but suffer poor predictions when applied to images
with large blurring differences. In particular, we observed low
area under curve values when models trained on blurred images
were applied to non-blurred images.

Index Terms—deep learning, convolutional neural networks,
digital pathology, image analysis

I. INTRODUCTION

Deep learning has become a popular methodology for
analyzing cancer whole slide images. It has been used to
study pan-cancer morphological features in hematoxylin and
eosin stained pathology images [1]. While deep learning
models tend to perform well on hold-out test sets, they may
suffer from large performance drops when applied to external
or out-of-sample datasets (see [2], [3] for examples). This
suggests a deep learning model may be dataset specific or
sensitive to dataset specific artifacts. The effect of artifacts
such as blurring, noise, and lossy image compressions on
classification of natural images is studied in [4]. Additionally,
neural networks can encode features due to various blurring
modalities, and detect the blur-specific artifacts in natural
images [5]. Sensitivity of deep learning models to data artifacts
and quality issues in the context of automated pathology is
underappreciated in the literature. Here, we investigate if the
inception V3 convolutional neural network can differentiate
lung cancer subtypes from blurred whole slide images. Lung
cancer subtype classification is an interesting case example
as it requires expert pathology knowledge for reliable sub-
type detection [6]. The need for expert knowledge suggests
morphological features that differ across lung cancer subtypes
may be weak. Stability and reliability of neural networks in
separating robust and biologically meaningful morphological
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features from image artifacts is an important issue, and a major
concern in translational lung cancer research [6].

We evaluated how classification accuracy decreases as slides
are blurred using a sequence of Gaussian kernels, increasing
the blurring standard deviation from 0 (no blurring) to 5 in
steps of 0.25 pixels. Fresh frozen lung adenocarcinoma and
lung squamous cell carcinoma whole slide images were used.
The networks showed strong robustness to blurred images
when train and test sets were blurred similarly: the area under
curve (AUC) averaged over 100 train-test splits was 0.92 and
0.90 for non-blurred slides and slides blurred using a Gaussian
kernel with a standard deviation of 5, respectively. On the other
hand, the AUC decreased drastically when train and test slides
were blurred to a different extent: the network trained on non-
blurred images had an AUC of 0.57 on slides blurred with a
kernel standard deviation of 5. Similarly, the network trained
on slides blurred with a kernel standard deviation of 5 had an
AUC of 0.63 on non-blurred images. Similar relations were
observed for other blurring standard deviations. For example,
the network trained on images blurred with a kernel standard
deviation of 2.5 achieved AUCs of 0.92, 0.62, and 0.76 on
slides blurred with kernel standard deviations of 2.5, 0, and 5,
respectively. The results suggest blurring differences between
train and test sets might have a large impact on accuracy.
Therefore, it would not be surprising for a network to suffer
low prediction accuracy on datasets with different resolutions,
or blurred regions of a dataset where such regions comprise
only a small portion of data.

II. METHODS

A. Data Acquisition

The fresh-frozen 20X hematoxilyn and eosin stained slides
of the lung adenocarcinoma (LUAD) and lung squamous cell
carcinoma (LUSC) of the cancer genome atlas (TCGA) were
used in the study. We borrowed the pre-processed tile level
images of [1]. Here, we briefly describe the processing steps
of [1]: Whole slide images were tiled using non-overlapping
512-by-512 (size in pixels) tiles. Otsu’s thresholding was used
to separate tissue from background, and tiles with less than
50% tissue were removed. The tiles with sufficient tissue were
saved. The borrowed curated data contained 819 LUAD and
753 LUSC slides.
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B. Blurred Image Construction

The tiles were blurred by 21 Gaussian kernels, with standard
deviations ranging from 0 pixels to 5 pixels in steps of
0.25 pixels. Note zero blurring denotes the original images
without any blurring performed. The Gaussian blurring step
was performed using the open cv package in python. The
images were then passed through the Inception V3 network
using the TensorFlow 2.2 package. Keras API was used
to implement this pipeline. The 2048 global average pooled
features were then saved.

C. Slide Representation and Classification Algorithm

Slides are associated with different number of tiles. A
typical approach is to train and predict labels at a tile level, and
combine tile-level predictions to obtain slide-level predictions
as a post-processing step (see [1] for examples). Here we
take a different approach. The median value of each of the
2048 Inception V3 features is used to encode each slide by
a 2048-dimensional feature vector. Initial evaluations suggest
such approach results in higher AUCs for blurred slides, and
was hence adopted as the methodology for the current study.

The Inception V3 architecture trained on image-net data
directly applies the globally averaged features to the clas-
sification layer with softmax activation. This corresponds to
logistic regression in a binary classification task. As each slide
corresponds to a 2048 dimensional vector, the feature matrix
(the matrix in which each row is a sample point and each
column is a feature) was small enough to be fully loaded
into memory. Therefore, instead of a batch-based approach
we opted for the classical approach of training a logisitc
regression model, where model parameters are updated using
the full set of trainng data. We used the sklearn package to
implement the classification step. We used the saga optimizer
with elastic net penalty, C = 1000, and l1 ratio was set to 0.5.
No hyper-parameter optimization was performed.

III. RESULTS

A. Data Visualization

Figure 1 provides examples of an LUAD tile blurred with
various kernel standard deviations. Note blurring with a stan-
dard deviation of 5 heavily degrades the image quality. Similar
quality reductions and blurring impacts was observed among
LUSC tiles.

B. Feature Representation Visualization

Figure 2 provides 2D TSNE plots (produced using the
sklearn package) for various blurring standard deviations,
suggesting the two classes only marginally separate in the
TSNE plots. Although we don’t observe strong class sepa-
rations in the plots, [1] reports an AUC of > 85% using a
tile-level approach based on the Inception V3 features. We
observed similar issues using UMAP. Therefore, classification
AUC is our only reference for assessing class separations.

Figures 3 and 4 provide 2D TSNE plots comparing non-
blurred and blurred LUAD and LUSC slides, respectively. For
both classes we observed marginal differences between TSNE

Fig. 1. The effect of different blurring standard deviations on a LUAD tile:
(a) no blurring, and blurring with standard deviations of (b) 0.5, (c) 1.5, (d)
2.5, (e) 3.5, and (f) 4.5 pixels.

Fig. 2. TSNE plots depicting the separation between LUAD and LUSC
classes at different blurring values: (a) no blurring, and blurring with standard
deviations of (b) 0.5, (c) 2.5, and (d) 4.5 pixels.

plots for blurring standard deviations ≤ 0.5; however, larger
standard deviations result in separations of the blurred and
non-blurred slides in the TSNE plots. While blurring with a
standard deviation of 1 is sufficiently strong to separate slides
in the 2D TSNE space, the differences between non-blurred
LUAD and LUSC deep learning features do not fully separate
them in 2D TSNE plots. These results suggest blurring may
have a stronger impact on the deep feature representation than
the subtype differences. The strong effect of blurring on the
deep feature representations are in-line with the results of [5]
in blurred image detection.
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Fig. 3. TSNE plots depicting the separation between the original (non-blurred)
LUAD and blurred LUAD slides using a Gaussian kernel with standard
deviations of (a) 0.5, (b) 0.75, (c) 1, and (d) 1.25 pixels.

Fig. 4. TSNE plots depicting the separation between the original (non-
blurred) LUSC and blurred LUSC slides using a Gaussian kernel with standard
deviations of (a) 0.5, (b) 0.75, (c) 1, and (d) 1.25 pixels.

C. Classification Performance Evaluation

Figure 5 provides the AUCs of the trained models averaged
over 100 train-test splits, where in each split 70% of slides in
each class were used for training. LUSC is considered the posi-
tive label for AUC computation. The model trained on each set
of blurred slides is applied to all blurred representations of test
slides. As the Figure suggests, models trained on slides blurred
with a Gaussian kernel with some standard deviation tend to
perform well on test set slides are blurred with similar kernels.
On the other hand, the classifiers suffer low AUCs when there
are large differences between the blurring standard deviations
of the train and test sets. Interestingly, models trained on
moderate and large blurrings tend to suffer low AUCs when
applied to non-blurred images. These results suggest that not
only do the models suffer low AUCs when the test slides
have lower resolutions (more blurring), but also when they
have much higher resolution (less blurring). We observed a
monotone decrease in AUC across the diagonal in Figure 5, but

Fig. 5. The test AUC averaged over 100 train-test splits.

the reduction in AUC was small throughout. Gaussian kernels
with standards deviations of 0 and 5 resulted in average AUCs
of 92% and 90% on the diagonal, respectively. We observed a
monotone decrease in AUC as the blurring difference between
train and test slides increased.

IV. CONCLUSION

Deep learning models have drastically increased prediction
accuracies in biomedical image analysis; however, they are
black boxes and difficult to interpret. The current study
suggests not only test slides with lower resolution compared
with training data may result in low prediction accuracies, but
also slides with higher resolutions may suffer similar issues.
Models trained on blurred images tend to work well on slides
with similar blurring. Future work entails similar analyses
on other classification tasks to assess the extent the current
observations generalize.
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