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Anomalous dynamics of translocation

Jeffrey Chuand, Yacov Kantor? and Mehran Kardar’
!Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
2School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69 978, Israel
SInstitute for Theoretical Physics, University of California, Santa Barbara, California 93106
(Received 1 August 2001; published 14 December 2001

We study the dynamics of the passage of a polymer through a membranérpostocatiol, focusing on
the scaling properties with the number of mononiér§ he natural coordinate for translocation is the number
of monomers on one side of the hole at a given time. Commonly used models that assume Brownian dynamics
for this variable predict a mednnforced passage time that scales abl?, even in the presence of an entropic
barrier. In particular, however, the time it takes for a free polymer to diffuse a distance of the order of its radius
by Rouse dynamics scales with an exponent larger than two, and this should provide a lower bound to the
translocation time. To resolve this discrepancy, we perform numerical simulations with Rouse dynamics for
both phantom(in space dimensiond=1 and 2, and self-avoidingin d=2) chains. The results indicate that
for large N, translocation times scale in the same manner as diffusion times, but with a larger prefactor that
depends on the size of the hole. Such scaling implies anomalous dynamics for the translocation process. In
particular, the fluctuations in the monomer number at the hole are predicted to be nondiffusive at short times,
while the average pulling velocity of the polymer in the presence of a chemical-potential difference is predicted
to depend orN.
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I. INTRODUCTION reduced to the escape of a “particléthe translocation co-
ordinate over a potential barrier.
The process of translocation, in which a polymer worms AssumingBrownian dynamicsor the translocation coor-
its way through a narrow pore, is an event important to manylinateé, and in the absence of a driving force, the character-
biological systems. Examples include the viral injection of!Stic first passage time scales 148, whereN is the number
DNA into a host, DNA packing into a shell during viral of monomers. This result cannot be reconciled .W'th the
equilibration time of a polymer that scales B$, with a

replication, gene swapping through bacterial pili, and the geaynamic scaling exponent that is larger than two for Rouse
netic technique of cell transformation by DNA electropora-

. h | b ¢ L _ dynamics of self-avoiding chains. Clearly, we expect the
tion [1]. There are also a number of recéntvitro experi- . nsiraint of passage through a hole to slow down rather

ments on transloc_ation, the electric-field-induced migrationy, 5 speed up the dynamics of the polymer, conceivably
of DNA through microfabricated channdlg], or through an leading to an exponent even larger than Previous work
a-hemolysin protein channel in a membrédi@4]. The driv-  yacognizes this difficulty; for example, R¢L3], while using
ing force is an essential ingredient in the above process, afe Brownian particle analogy, clearly explains why it is ap-
are the entropic and cooperative factors that arise from thglicable to the preasymptotic region of interest in this paper.
connectivity of the polymer. An interesting statistical conse-In this paper, we consider the true asymptotic scaling of the
quence of the latter is that the polymer faces an entropigranslocation time for largéN, and find that its scaling is
barrier, as the number of available configurations is leassimilar to the corresponding equilibration time, albeit with a
when the chain is halfway through the hole. In this regard itlarger prefactor. Since we cannot rely on the Brownian par-
shares similarities with other entropically controlled polymerticle picture in this regime, we reach this conclusion by nu-
systems, e.g., polymer trapping in random environmentsnerical simulations.
[5—7], DNA gel electrophoresif8], or reptatior[9]. In these The problem is to calculate the time required for a poly-
cases, the geometry of the obstacles around which the polyner to move from one side of a rigid wall to the other
mer must diffuse constrains the kinetics of the process.  through a narrow hole. This is schematically depicted in Fig.
A number of recent theoretical works have shed light onl, with the space on both sides of the wall being infinite.
the translocation proce$8,10—14, mostly in the presence Although frequently a driving force, such as an external field
of a driving force. A common approach is to focus on theor chemical potential difference is present in the problem, we
dynamics of a single variable representing the monomeshall restrict ourselves to a model without external forces.
number at the porfl0,13,19. Due to its resemblance to the For translocation to occur, there must be two events. The first
“reaction coordinate” for chemical processes, we shall referis the collective diffusion of the polymer to the vicinity of
to this parameter as the translocation coordinate. Assuminghe pore; the second is its threading through the pore. For a
that the segments on the two sides of the hole are in equilibfinite system, or in the presence of a finite concentration, the
rium leads to a force acting on the trapped monomer thafirst event takes a time determined by the concentration of
may be derived from the entropic barrier mentioned beforepolymers in solution, their diffusion constant, and the effec-
as well as any chemical-potential differences that may protive cross section of the hole. This time is decoupled from
vide a driving force. The translocation problem is therebythe time for the second event, which is constrained by the
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passage of all monomers through the hole. Since we are in-
terested only in the latter event, we shall assume that in the
initial state, the first monomer of the polymer chain is al-
ready threaded through the hole. To avoid the situation in
which the polymer withdraws from the hole and drifts away
to infinity, we add the restriction that the first monomer is
never allowed to cross back out of the hole. These con- w
straints effectively isolate the translocation time from the & = p------ --3
time for the polymer to find the holgl1].

Despite the conceptual simplicity of the translocation
problem, it has been difficult to solve analytically. Even the
simplified case of a Gaussian polymer in a one-dimensional
space moving past a potential barrier is nontriyi8]. Con-
sequently, theoretical treatments resort to approximations
such as reducing the problem to Brownian dynamics of the FIG. 1. Schematic representation ofNemonomer polymer in
translocation coordinate. As reviewed in Sec. I, the focus othe process of translocation through a hole of siz&he “translo-
this approach is the probability density functip(s,t) that a  cation coordinate’s is the number of monomers on one side.
particular monome(labeled by its sequential numbealong
the chain is located at the hole at time For such a con- lations for phantom chains reproduce the trends observed in
strained configuration, one may derive the entropy of theone dimension, i.e., a mean translocation time scaliny%as
polymer if the segments on the two sides are in equilibriumwith a larger prefactor. However, once self avoidance is in-
This entropy is then assumed to generate a force acting otluded, the translocation times increase dramatically, the
the monomer, favoring its motion to one side or the othermean translocation time appearing to scaleNds with «
Naturally, stochastic forces are also presémd, in fact, =~2.5, which is the exponent for Rouse relaxation of self-
necessary to push the chain over the entropic barrks-  avoiding chains in two dimensions. We find th@ior the
suming that the translocation coordinate obeys Brownian dyparameters of our modeiranslocation times are roughly ten
namics, this leads to a Fokker-Planck equation for the evotimes longer than typical equilibration times. Thus, translo-
lution of p(s,t). The standard Kramers’ approach to escapecation is indeed much slower than diffusion of the polymer,
over a potential barrier yields a mean translocation time thabut appears to scale with the same exponent.
scales with the number of monomersN# i.e., the entropic Consequences of this observation are discussed in Sec. V.
barrier does not modify the diffusive scaling. We supplemeniThe observed nontrivial scaling of translocation times is a
this result with a numerical integration of the Fokker-Planckclear indication of the failure of the Brownian picture for the
equation that yields the complete distribution function fordynamics of the translocation coordinate. Instead, we suggest
transit times. The Rouse model for the dynamics ghan-  that the anomalous dynamics of a specified monomer in a
tom chainalso predicts a time of order &2 for the equili-  chain provides a better analogy. Following scaling arguments
bration of the polymer. Since such equilibration is essentialised for the latter, we predict anomalous behaviors for the
to the use of the entropy function as the driving force, thetranslocation coordinats(t). In particular, fluctuations irs
internal consistency of the approach is in doubt. This is evere predicted to scale a$, while in the presence of a
more so when considering self-avoiding polymers, where thehemical-potentialA i, the pulling velocity is predicted to
relaxation times are much larger thBA. Noting this contra-  behave asi=A uN7, with {~0.46, andy~ —0.18 for Rouse
diction, we proceed to numerical simulations in the rest ofdynamics in three dimensions.
the paper.

In Sec. lll, we report on simulations of a phantom chain
in one dimension. In this case, the relaxation time of the
chain scales a®\?, and is thus not inconsistent with the  The reduction of the translocation problem to the Brown-
predictions of the Brownian particle analogy. We do indeedian dynamics of a single coordinate was introduced in Ref.
find that the probability density function for translocation [17], and further explored in Ref10]. Here, we review the
times (once appropriately scaleds quite similar to that ob- main features of this approximation and its consequences.
tained from solving the Fokker-Planck equation. However,Consider a polymer moving through a pore in a membrane,
the mean translocation time, while appearing to scald’as where the hole is so narrow that only a single strand of
has a much larger prefactor, which depends on the size of thgolymer may pass througliThus, the parameter describing
hole. Unfortunately, in one dimension, self-avoiding chainsthe width of the hole in Fig. 1 isv=1.) The progress of the
are fully stretched, and do not provide a fair model for trans{polymer may be tracked by following the numbeof the
location of a coiled polymer. monomer, which is located in the hole at a particular time, as

Two-dimensional polymers as described in Sec. |V, aralepicted in Fig. 1. Let us denote the probability of monomer
ideal for studying the scaling of translocation times in a mores being in the hole at timé by p(s,t). As the monomes
complex situation. On the one hand simulations are fastemoves forward or backward through the hole a distaan (&
and easier than in three dimensions, while on the other handyder of the typical separation between monoméhs rel-
the effects of self avoidance are more pronounced. Our simwevant monomer number increases or decreases by unity.

N

1. BROWNIAN TRANSLOCATION
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Treatings as a continuous variable, we may write a continu- Wrr—rr7 v rrr T
ity equation for the probability as |

ap I 8l
E'F%— , (1) -

wherej(s,t) is the probability current. 61
The central difficulty is to find an appropriate expression
for j that correctly reflects the correlated motion of the whole
polymer. If the progress of the polymer is sufficiently slow
for the segments on the two sides to come to equilibrium, the
monomer at the hole experiences a mean force that can be
obtained from the variations of a constrained free-energy
F(s). How such a force may be used to deduce the dynamics
of the monomer label is not clear. The analogy to Brownian ol v b e b
motion suggests that the rate of changes &f related to the 0 0.2 0.4 0.6 0.8 1
force by a mobilityw. Since the polymer fluctuates back and s/N
forth between the two sides, there must also be a stochastic ) ) ) ) ) )
element that may be represented by a random force. If there FIG. 2 The entropic potential barrier _found in the single vari-
are no correlations in this force at different times in the  2°I€ €quivalent to the polymer translocation problem.

standard Langevin formulation for a Brownian particle right (—o) represents the escape of a polymer that has
there is a current that depends on the local probability dencrossed the barrier. The numbers of configurations of poly-

F/k,T

sity as mers in higher-space dimensiodswhether phantom or self
P pre avoiding (SA), cannot be calculated exactly. However, it is
j=—D _p+i _) ) known that they have the same dependence on the polymer
ds  kgT ds length [20], with y in Eq. (3) replaced by a number that

o ) . . depends ond (y=1/2 for phantom chains Thus, the
where the diffusion parameté is proportional to the vari- ¢ dependent part of the free energy will have a different pref-
ance of the stochastic fordd8]. As in standard Brownian 4ctor, put the logarithmic dependence remains unchanged.
processes, the above equation assumes that the. mobility is By inserting Eq(3) into Egs.(1) and(2), we reduce poly-
related to the temperatuieby w=D/kgT, wherekg is the  mer translocation to a standard single-particle problem of
Boltzmann constant. No similar restriction is made in Ref.escape over a potential barrier. It is interesting to note that if
[13], which obtains the diffusion term from considerations of ;e rescale the variables accordingste sN, t—tD/N?, all
symmetry and locality. However, as elaborated in Sec. V, th@y andD dependence is eliminated from the equation, result-
assumption of locality need not be valid in this case, SiNCgng in
the true dynamics of must reflect the collective behavior of )
the whole polymer. wp_Ip. i( 1-2s )

Calculating the restricted free-ener§ys) is reasonably at o2 Vs (1—s)sp '
straightforward, and equivalent to finding the number of pos-

sible configurations of a polymer attached at one point to aIIl'he Zotl)“ti?(n to thlis_ dimt()ansiorlll_eTs_ eq“rf‘“of‘ EaKIZ?S con-
impenetrable barrier. The exact solution is known for theverted back to real time by multiplying tfteaxis by '

case of one-dimensional discrete random walks with fixed NUS: Under the assumptions listed above, the escape time of
step length(see, e.g., Ref19)): It can be shown thafin the a particle, and thus the translocation time of a polymer are
large N limit) the number ofN-step walks that start at a Proportional toN?/D. Note that this conclusion isdepen-
boundary and never return to it i€2/mNx 2N. Thus, the dentof the value of the parameter, and remains valid even

number of configurations wite monomers on the right and for_li';\hSA cr;)?in ianhiCm h?sn?(;iﬁererlllt_value.d_ .
N—s monomers on the left has thedependenced/[ (N € problem of escape iro epwell In one dimension

~9)s)7 whereA s independent os and y= 112, giving the. 52 SoEE el BY Rt e ropabiy
s-dependent part of the free energy as distribution of a particle in the well can be represented by an
F=1vkgTIn[(N—s)s]. (3)  equilibrium (Boltzmann weight, Kramers’ method enables
an analytic calculation of the mean escape time. Applying
To this result we add the conditions that the first monomeikKramers’ formula to the logarithmic potential of the prob-
can never be withdrawn from the hole, and that afterNle ~ lem, one finds[17,1Q (for y=1/2) that the mean escape
monomer crosses the wall, the polymer will no longer returntime 7 is (72/16)N?/D. The distribution of escape times in
to it. Figure 2 depicts the resulting free energy for the case oKramers’ formula is by construction a simple exponential.
N=1000. The two conditions are shown by two vertical linesEquation(4) may also be solved numerically, by placing a
on the sides of the graph: the line on the Igififinite barrie) delta function at the left edge of the potential depicted in Fig.
signifies our assumption that the first monomer may nevep att=0 and integrating in time. There are some differences
cross back through the hole, while the vertical line on thebetween the numerical solution to Ed), and the Kramers

4
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R T T 1 mers RS~N, and, consequently the equilibration time is of
the same orderN?/D) as the mean passage time obtained
with Brownian translocation dynamics. Thus, the equilibrium
assumption is marginallgin)valid in this case. On the other
hand, for self-avoiding polymer&,~N", where »=0.75
and 0.59 for dimensiond=2 and 3, respectively. The re-
sulting relaxation times£N*2¥/D) are now longer than
the translocation times predicted (N?/D) by Brownian dy-
namics, and consequently, the approximations involved are
not self consistent. In the following sections, we try to gain
further insights into the problem by numerical simulations of
the translocation of a polymer in one and two dimensions.

probability density

IIl. SIMULATIONS IN ONE DIMENSION

[
—_
[av)
()

We begin by examining the translocation of ane-
dimensional phantorpolymer via a Monte Carlo simulation

FIG. 3. Probability distribution of escape times measured inwith Rouse-like dynamics as follows. Our model consists of
reduced, dimensionless, units. The dashed curve corresponds to the chain of N “atoms” placed on the sites of a one-
logarithmic potential depicted in Fig. 2, while the solid line is in the dimensional lattice. No excluded volume interactions are
absence of the entropic barrier. The curves were obtained by Npresent, and the spatial distance between two neighboring
merical integration of the Fokker-Planck equation. atoms(along the sequence of the chaiten be 0, 1, or 2

lattice spacings, i.e., the “bond” between adjacent atoms has

solution, e.g., the former decays to zero fes0 due to the a maximal length of 2. This represents a trivial implementa-
time it takes for the delta function to diffuse out of the well. tion of the fluctuating-bond metho@2]. Initially, the first
However, the mean escape time for the numerical solution iatom of the chain is placed on, say, the right of the mem-
7~0.6N?/D, which almost coincides with the approximate brane, while all other atoms are on the léfie assume that
Kramers result. The distribution of escape times calculatethe membrane is located between the coordinate® and
from integrating the Fokker-Planck equation is shown by thex=1 and, consequently, the first atom is initially placed at
dashed line in Fig. 3. x=1, while the rest of the atoms are x&0.) During the

If the potential barrier is absent altogether, then the distrisimulation, the first atom of the chain is never allowed to
bution of escape times may again be calculated)., by  move to the left of the membrane. The “width of the hole
numerical integration and is depicted by the solid line in is adjusted by changing the maximal number of bonds al-
Fig. 3. The mean escape time in this case4s0.5 (in re-  lowed to be simultaneously present at the hole. An elemen-
duced units ofN?/D). There is only a 20% difference be- tary move consists of randomly picking an atom and attempt-
tween the mean escape times of the problems with and withng to move it one lattice step in a randomly selected
out the logarithmic potential barrier. More strikingly, there is direction. If the configuration does not violate any of the
little difference in the distribution of times with or without a restrictions of the model it is accepteld.elementary atom
barrier. (This barrierless version of the problem can bemove attempts are defined as one Monte Carlo time unit.
thought of as describing the adsorption of a particle starting Each simulation is terminated when all monomers are on
at a unit distance from a sink. From a polymer perspective, ibne side. Figure 4 depicts the distribution of translocation
corresponds to the passage of a polymer througim@g—  times of such phantom chains measured for several chain
although the polymer must pass through a constricted spacksngths, and for unit width of the hole. If we normalize the
its free ends may have any possible configuratitmview  time for eachN by the mean translocation time for that
of the minute effect of the entropic potential, the notion of length, we observe that the resulting curves are quite similar
“escape over a barrier” does not provide a particularly use-and closely resemble the theoretical curve obtained assuming
ful analogy. a Brownian translocation coordinate. While the similarity

A central assumption in the reduction of the polymermay appear to support this picture, we should note that since
problem to a single coordinate is that translocation is slowthe distribution is constrained to vanish at both short and
Specifically, it should be slow enough that the polymer segiong times, qualitative similarities are dubious. Moreover,
ments on the two sides of the membrane are in equilibrium athe absolute values of the mean translocation timas de-
every value ofs. We may check for the self consistency of picted in Fig. 5, are significantly larger than the estimates
this assumption: The equilibration time of a free polymerfrom Brownian dynamics. This log-log plot indicates that the
may be estimatefB] as the time required for it to diffuse its apparent exponent is somewhat larger than two for shiall
own radius of gyratiorRy. Under Rouse dynamidsvhich  and only gradually approaches the scaling form N2
ignores hydrodynamic effegisthe diffusivity of the center However, the prefactor of the power law foi=256 is
of mass of arN-monomer polymer is reduced /N, where  roughly two orders of magnitude larger than expected for a
D is the diffusion constant of a single monomer, resulting inBrownian translocation coordinate. Such discrepancy should
an equilibration time of order dﬂgN/D. For phantom poly- not be surprising—the translocation time predicted by this
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FIG. 4. Probability density of translocation times for one- kg 6. Dependence of the mean translocation timen the
dimensional phantom polymers. Solid, dotted, and dashed lines cofigih of the holew. for N=3. 4. 6. 8. ...91 128 and 181. The
respond to polymer lengthe=32, 64, and 128, respectively, and (imes have been normalized By to focus on the behavior of the

were extracted from 10 000 simulations, each. The times have beepﬂefactor. Each curve corresponds to fiddand is obtained by
normalized by their respective mean translocation tin(B) in averaging over 1,000 cases.

each case. The continuous curve corresponds to the solution of the
Fokker-Planck equation in the single-particle approximation. and show some indications of collapse onto a universal
curve, but theN? dependence is not as clear as for the wider

model is similar to the time required for a polymer to diffuse holes.

its own radius of gyration. It is reasonable to expect that IV. SIMULATIONS IN TWO DIMENSIONS

passage through a narrow hole should be slower than diffu-

sion without a wall. Excluded volume effects drastically modify the shape and
Not surprisingly, translocation times are strongly effectedproperties of the one-dimensional phantom polymer consid-

by the widthw of the hole, as indicated in Fig. 6. When ered in the previous section. The chain becomes stretched,

reaches the siz&, of the chain ¢ N) the translocation and its dynamics are then limited by reptati@]. To study

time should become independentwaf This is supported by the effects of self avoidance on translocation in the coiled

the saturation of the rescaled timg\? at roughly the same  state, higher-dimensional simulations are necessary. Two-

value ofW/Rg~W/\/N in this figure. For small holes, the dimensional polymers are ideally suited to this purpose for

translocation times are strongly dependent on the hole sizé)e dual reasons that excluded volume effects are more ap-
parent, while computation times are shorter than in the three-

dimensional case.

As in the one-dimensionallD) system, we employ a
fluctuating-bond model for simulatiori®2], implementing
Rouse-like dynamics for linear polymers of several different
lengthsN. Simulations were performed both with and with-
out excluded volume constraints. In this model, the mono-
mers of the polymer lie on a2 square lattice. Random
motion is simulated through a series of elementary moves of
single monomers. In each move, a monomer is selected ran-
domly and then moved a single lattice unit in one of the
+X,—X,+Yy, or —y directions. If the move violates any of
several constraints, it is rejected. For phantom chains, bonds
have a maximal allowed length af10 lattice units. For ex-
cluded volume chains, in addition, the distance between any
two monomers is constrained to be at least two lattice units.
For excluded volume chains, these constraints also prevent
the chain from crossing itse]22]. The wall has a thickness
of three units and the hole has a width of two lattice units. At

FIG. 5. Logarithmic plot of the mean translocation timas a  these sizes, only one monomer may be in the hole at a time,
function of chain lengttN for a one-dimensional phantom polymer. but the hole is large enough that translocation may occur
Each data point represents an average over 10 000 realizations. Thdth the given move set. EacN elementary atom move
solid line has slope 2. attempts are defined as one Monte Carlo time unit.
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FIG. 7. Logarithmic plot of the mean translocation timeas a ) )
function of chain lengthN, for two-dimensional phantom and ex- FIG. 8. The effective power-law exponents for translocation and

cluded volume polymers. Errorbars indicate the standard deviatiofliffusion times as a function of length for 2D polymers. For both
over runs. translocation and free diffusion, self-avoiding chains exhibit a dy-

namic exponent that approaches 2.5, equal @21 given thed

The simulation begins by placing the first monomer at the=2 swelling exponent of = 3/4. For phantom chains, the exponent
hole, while the remainingd—1 monomers are in a random is noticeably smaller, and approaches two. In both the self-avoiding
conformation on the left side of the wallTo generate the and phantom cases, the asymptotic exponent for translocation time
initial random configuration, the chain is first allowed to Nearly equal to that for Rouse relaxation.
fluctuate subject to the constraints of impermeability of the
wall and fixed location of the first monomer. The fluctuation avoiding constraint of the bond-fluctuation model is re-
time is 20N2, which should be sufficient to randomize the moved are also included in this figure. The power-law ex-
initial condition for the purposes of our simulations, at theponent in this case asymptotically approaches a value close
length scales employed. In any case, the time it takes foi0 2, in agreement with the one-dimensional results, and con-
translocation is many times longer than the Rouse relaxatiofistent with Brownian dynamics. At eadly the uncertainty
time, and any initial condition effects will be transients. in the average translocation tintequal to the standard de-
Once the initial configuration has been established, the polyviation of 7(N) over runs divided by the square root of the
mer is allowed to move in accordance with the restrictions ohumber of runshas been translated into an uncertainty in the
the model. We measure the time between the beginning décal power law. This uncertainty, as depicted by the error
the translocation, and the moment when the last monomépars, is quite small, indicating that our conclusion is not due
enters the hole. Because only one monomer may lie in thto statistical fluctuations.
aperture at a time, this condition is equivalent to the com- The observed scaling laws for self-avoiding and phantom
plete translocation of the polymer through the hole. As in thepolymers in fact agree with the exponents expected theoreti-
one-dimensional case, the first monomer is not allowed tgally for Rouse relaxation in the absence of a wall. As stated
move to the left of the hole. previously, translocation across the barrier requires that,

Translocation times were calculated for a number of dif-minimally, the chain diffuses a distance equal to its radius of
ferent chain lengthdN, with several thousand runs at each gyration. The time for such diffusion isrg~ RSN/D
length.(The number of runs decreases with increadingue  ~N!"2”. For a self-avoiding walk in two dimensions,
to CPU limitations) Theses results are shown for both phan-=3/4 andrg~N?®, while for a phantom chairy is replaced
tom and self-avoiding chains in Fig. 7. Errorbars indicate theby 1/2, leading to the relationshigr~N2. For comparison,
standard deviation of translocation times over runs. Fig. 8 also shows the derived power-law exponents from

We then attempted to fit the results to a dynamic scalingsimulations of simple diffusion in the absence of a wall. For
form, with the effective exponent depicted in Fig. 8. Thean excluded volume chain, we approach the scatifndN?>,
points are a plot of the local exponemf assuming a power- while for the phantom chain~N?. The latter results were
law 7~N¢, as determined from two neighboring polymer generated as follows: We started with the same type of ran-
lengths N; and N, via the formula a(y/N;iNy) dom initial configurationggenerated by annealing near an
=log[ 7(N,)/7(N;) /log(N,/N,). The exponentx for the ex- impermeable wa]l as for the translocation case, and again
cluded volume translocation approaches an asymptotic limitmposed the constraint that the first monomer cannot pass to
that is definitely larger than two. This clearly indicates thatthe left side of an imaginary wall. The other monomers, how-
excluded volume effects are inconsistent with Brownian dy-ever, are allowed to diffuse without feeling this wall. The
namics for the translocation coordinate. The data for thesimulation was stopped when all monomers moved to the
translocation times of a phantom polyn{ar which the self-  right of the imaginary wall.
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20 - ' ' translocation process is the lalsét) for the monomer in the
. ‘ i hole at timet (see Fig. 1. A commonly used analogy is that
$ Time Ratio for Phantom Chains - |1 this “reaction coordinate” undergoes stochastic motion, as in
a Brownian particle in a force fieldl0,15,13. For unforced
translocation(with or without the inclusion of an entropic
° L 1 barrien, such approaches lead te-N?, which is inconsis-
'y tent with our numerical results, except for the case of diffus-
ing phantom polymers. Such scaling is also at odds with the
| expectation that constraining the polymer to pass through a
o hole should slow down its dynamics compared to free mo-
ésmo _ tion over a similar distance. The numerically observed scal-
(: ° ing is thus indicative ohnomalous dynamiosf the translo-
o 1 cation coordinates(t)—we propose instead an alternative
F analogy that incorporates this observation.
0 ' 50 100 ' 150 The dynamics of the polymer is the result of cooperative
N motions of its many monomers. When described by just a
) ) _ o single variable, say the translocation coordinate, the effect of
FIG. 9. Comparison of simulation results for diffusion through Athe other degrees of freedom is to exert correlated forces
hole that may fit one monomer versus free diffusion. Translocatior] . . L .
eading to anomalous dynamics. This is best illustrated by

times through the hole are larger than the free diffusion for both . . . .
phantom and self-avoiding chains. In both cases, the ratio of thes@e well-studied case of the dynamics of a single monomer in

times levels off to a constant. a polymer: Consider the positiarft) of a particular atom in
the background of all the other monomers. The dynamics of

At least in these examples, we find that the scaling of(t) has indeed been studied by numerical, analytical, and
translocation times is the same as that for equilibration of th%xperimental method®3]; its anomalous features are easily
polymer in the absence of a wall. However, the constraint otaptured by the following scaling argument: For short times,

passing through the hole must clearly slow down the dynampe expect that the squared change in the position has a scal-

ics of the polymer compared to the case of free diffusioning form (Ar2(t))~t2¢, with no dependence oN since the

over a similar distance. This slowdown must then be "®monomer does not yet feel any effects from the finite size of

flected in an overall prefactor that determines how mucr‘{he polymer. At a time of the order of the relaxation time

slower translocation is relative to pure diffusion. The data; r the whole chain, the monomer should have moved by a
that a}ddre_ss this issue are o_IlspIayed in Fig. 9. The_rath 0(ﬁstance of the order of its radius of gyration, givhﬁ
crossing times for translocation compared to pure diffusion”™ -~

(as described in the previous paragraate plotted for both :Trg' Since 7,~Rg, we immediately obtain the exponent
self-avoiding and phantom chains. For self-avoiding poly-{=1/z describing the anomalous fluctuations of the specified
mers, the hole slows down the chain by a factor of about 5monomer at short times.

while for phantom chains the ratio is about 13. These num- We now adapt a similar scaling argument to describe the
bers are roughl\ independent foN> 10 (for excluded vol-  squared change in the translocation coordinate, assuming
ume chainsandN>50 (for phantom chains It is interesting ~ (As?(t))~t?¢ at short times. This behavior should saturate
to note that translocation slows down the phantom chainvhens becomes of the order of the chain length in a time
more than it does the excluded volume chain. However, these~ RépN”Z (assuming that translocation times always scale
ratios should not be taken too seriously, since for more realin the same way as equilibration timeSubstituting this in
istic systems such as the translocation of DNA moleculeshe former equation allows us to identify the exponént
through a cell membrane, the details of the shape and inter=1/(zv) for anomalous dynamics of the translocation coor-
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action forces at the pore play a significant rp3e13,4. dinate. For the case of diffusive polymer dynamics, we thus
obtain {=1/(1+2v) resulting in {=2/5 and {~0.46 for
V. DISCUSSION self-avoiding chains in two and three dimensions, respec-

tively; i.e., in this case, the fluctuations asabdiffusive If

The central result of this paper is the nontrivial scaling ofwe naively use the Zimm exponent=d describing the re-
the mean translocation timefor unforced passage of a poly- |axation of polymers in hydrodynamic flows éhdimensions,
mer through a hole with its lengtN. For the diffusive dy- e obtain(d=2)=2/3, while {(d=3)~0.56, i.e., the fluc-
namics of a self-avoiding chain id=2, numerical simula- tuations are predicted to tmuperdiffusiven this case. The
tions indicater~N*°. By extension, we expeet~N® with  usual origin of the speed up of polymer dynamics in a fluid is
a=1+2v for diffusive dynamics. Possibly even more gen- attributable to the velocity flow field set up by the other
erally for other types of dynamias= vz, where the swelling monomers. It is doubtful that using the bulk Zimm exponent
exponentv relates the radius of gyration of the polymer to its remains valid for flows that must vanish in the vicinity of the
length by Ry;~N”, while its relaxation time scales ag  wall. Thus, the above prediction of superdiffusive behavior
~Ré with the dynamic exponert should not be taken seriously prior to a proper analysis of the

The natural parameter for following the progress of thehydrodynamic correlations in the vicinity of the wall.
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It is experimentally hard to directly probe the motion of single-stranded DNA through a nanopore was observed to be
the translocation coordinate. The quantity that is easily meandependent ofN in the range of 10 to 100 base pairs, al-
sured in experiment®4] is the distribution of the transloca- though it exhibited a nonlinear dependence on the applied
tion times in the presence of a forcéntroduced via a voltage. While the latter is attributed to the strong interac-
chemical-potential differencA u for monomers on the two tions of DNA with the pore, it is intriguing to inquire if
sides of the wall. While our results so far were in the absenceaonlinearities could be intrinsic to translocation dynamics. In
of such a driving force, anomalous dynamics has conseparticular, in the previous paragraph we assumed that the
guences for the length dependence of the forced velocity. Ldtnction ¢(A wN/kgT) is linear in its argument. While this
us first recall the arguments for the drift velocity of a s likely true for small applied force, it may well cross over

polymer in a forceF: Scaling considerations suggestF) 0 a nonlinear form at larger values of its argument. If the
~(Ry/ 1) (FRy/kgT)~N"1"2$(FN”), where ¢ is a pulling velocity is then independent df, it acquires the
scaling function depending on the ratio of two quantitiesnonlinear formu~(Ax)*~*. This possibility provides im-
having dimensions of energy. The proportionality of the ve-Petus for further numerical studies of forced translocation.
locity to the force requires a linear scaling function, leading We conclude by listing two other avenues of potential
to a mobility v/F~N~*#~2)_ For Rouse and Zimm dynam- €Xploration. The first is to note that the distribution of trans-
ics, this leads to the well-known scalings of mobility asi1/ l0cation times should also be modified by the anomalous

and 1Rg—2, respectively. Similarly, for the pulling velocity c_iynamics, potentially to _inclu_de _pow_er-law tails that are_dis-
tinct from the exponential tails in Fig. @4]. Secondly, it

u=s of the transiocafion coordinate, scaling suggasts may be possible to construct an experimental system close to

— _N2—zv I
.N/T¢(A“N/kBT) N Ap. Or'1ly'for t'he case of'd|ffu our two-dimensional simulations, using vibrated granular
sive dynamics of a phantom chain is this velocity indepen-

~chains in a variation on the setup used in R&b]|, with a
dent ofN. The anomalous slowdown due to Rouse dynamic : - -
leads to a mobility that scales bis 2in d— 2, andN-C°38in Thain that is threaded through a hole in a wall.
d=3. By contrast, hydrodynamic speeding up with Zimm
dynamic exponents leads to a mobility that grow$\&< and
N%Zin two and three dimensions, respectively. Once more,
the latter results are not to be taken seriously without full We thank M. Muthukumar, K. Kremer, E. Ben-Naim, Z.
hydrodynamic calculations in the presence of a wall. Experi-A. Daya, and A. Yu. Grosberg for useful discussions. This
ments so faf4] do not indicate anomalous scaling, but thework was supported by the US-Israel Binational Science
size range may not be sufficient to detect the rather smalFoundation Grant No. 1999-007, and by the National Sci-
exponent. ence Foundation through Grant Nos. DMR-01-18213 and

In the experiments of Ref4], the pulling velocity of PHY99-07949M.K.).
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