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Anomalous dynamics of translocation
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We study the dynamics of the passage of a polymer through a membrane pore~translocation!, focusing on
the scaling properties with the number of monomersN. The natural coordinate for translocation is the number
of monomers on one side of the hole at a given time. Commonly used models that assume Brownian dynamics
for this variable predict a mean~unforced! passage timet that scales asN2, even in the presence of an entropic
barrier. In particular, however, the time it takes for a free polymer to diffuse a distance of the order of its radius
by Rouse dynamics scales with an exponent larger than two, and this should provide a lower bound to the
translocation time. To resolve this discrepancy, we perform numerical simulations with Rouse dynamics for
both phantom~in space dimensionsd51 and 2!, and self-avoiding~in d52) chains. The results indicate that
for largeN, translocation times scale in the same manner as diffusion times, but with a larger prefactor that
depends on the size of the hole. Such scaling implies anomalous dynamics for the translocation process. In
particular, the fluctuations in the monomer number at the hole are predicted to be nondiffusive at short times,
while the average pulling velocity of the polymer in the presence of a chemical-potential difference is predicted
to depend onN.

DOI: 10.1103/PhysRevE.65.011802 PACS number~s!: 36.20.2r, 82.37.2j, 83.10.Mj, 05.40.2a
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I. INTRODUCTION

The process of translocation, in which a polymer wor
its way through a narrow pore, is an event important to ma
biological systems. Examples include the viral injection
DNA into a host, DNA packing into a shell during vira
replication, gene swapping through bacterial pili, and the
netic technique of cell transformation by DNA electropor
tion @1#. There are also a number of recentin vitro experi-
ments on translocation, the electric-field-induced migrat
of DNA through microfabricated channels@2#, or through an
a-hemolysin protein channel in a membrane@3,4#. The driv-
ing force is an essential ingredient in the above process
are the entropic and cooperative factors that arise from
connectivity of the polymer. An interesting statistical cons
quence of the latter is that the polymer faces an entro
barrier, as the number of available configurations is le
when the chain is halfway through the hole. In this regar
shares similarities with other entropically controlled polym
systems, e.g., polymer trapping in random environme
@5–7#, DNA gel electrophoresis@8#, or reptation@9#. In these
cases, the geometry of the obstacles around which the p
mer must diffuse constrains the kinetics of the process.

A number of recent theoretical works have shed light
the translocation process@3,10–14#, mostly in the presence
of a driving force. A common approach is to focus on t
dynamics of a single variable representing the monom
number at the pore@10,13,15#. Due to its resemblance to th
‘‘reaction coordinate’’ for chemical processes, we shall re
to this parameter as the translocation coordinate. Assum
that the segments on the two sides of the hole are in equ
rium leads to a force acting on the trapped monomer
may be derived from the entropic barrier mentioned befo
as well as any chemical-potential differences that may p
vide a driving force. The translocation problem is there
1063-651X/2001/65~1!/011802~8!/$20.00 65 0118
s
y
f

-
-

n

as
e

-
ic
st
it
r
ts

ly-

n

r

r
ng
b-
at
,
-

y

reduced to the escape of a ‘‘particle’’~the translocation co-
ordinate! over a potential barrier.

AssumingBrownian dynamicsfor the translocation coor-
dinate, and in the absence of a driving force, the charac
istic first passage time scales asN2, whereN is the number
of monomers. This result cannot be reconciled with t
equilibration time of a polymer that scales asNa, with a
dynamic scaling exponenta that is larger than two for Rous
dynamics of self-avoiding chains. Clearly, we expect t
constraint of passage through a hole to slow down rat
than speed up the dynamics of the polymer, conceiva
leading to an exponent even larger thana. Previous work
recognizes this difficulty; for example, Ref.@13#, while using
the Brownian particle analogy, clearly explains why it is a
plicable to the preasymptotic region of interest in this pap
In this paper, we consider the true asymptotic scaling of
translocation time for largeN, and find that its scaling is
similar to the corresponding equilibration time, albeit with
larger prefactor. Since we cannot rely on the Brownian p
ticle picture in this regime, we reach this conclusion by n
merical simulations.

The problem is to calculate the time required for a po
mer to move from one side of a rigid wall to the oth
through a narrow hole. This is schematically depicted in F
1, with the space on both sides of the wall being infini
Although frequently a driving force, such as an external fie
or chemical potential difference is present in the problem,
shall restrict ourselves to a model without external forc
For translocation to occur, there must be two events. The
is the collective diffusion of the polymer to the vicinity o
the pore; the second is its threading through the pore. F
finite system, or in the presence of a finite concentration,
first event takes a time determined by the concentration
polymers in solution, their diffusion constant, and the effe
tive cross section of the hole. This time is decoupled fro
the time for the second event, which is constrained by
©2001 The American Physical Society02-1
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passage of all monomers through the hole. Since we are
terested only in the latter event, we shall assume that in
initial state, the first monomer of the polymer chain is
ready threaded through the hole. To avoid the situation
which the polymer withdraws from the hole and drifts aw
to infinity, we add the restriction that the first monomer
never allowed to cross back out of the hole. These c
straints effectively isolate the translocation time from t
time for the polymer to find the hole@11#.

Despite the conceptual simplicity of the translocati
problem, it has been difficult to solve analytically. Even t
simplified case of a Gaussian polymer in a one-dimensio
space moving past a potential barrier is nontrivial@16#. Con-
sequently, theoretical treatments resort to approximati
such as reducing the problem to Brownian dynamics of
translocation coordinate. As reviewed in Sec. II, the focus
this approach is the probability density functionp(s,t) that a
particular monomer~labeled by its sequential numbers along
the chain! is located at the hole at timet. For such a con-
strained configuration, one may derive the entropy of
polymer if the segments on the two sides are in equilibriu
This entropy is then assumed to generate a force acting
the monomer, favoring its motion to one side or the oth
Naturally, stochastic forces are also present~and, in fact,
necessary to push the chain over the entropic barrier!. As-
suming that the translocation coordinate obeys Brownian
namics, this leads to a Fokker-Planck equation for the e
lution of p(s,t). The standard Kramers’ approach to esca
over a potential barrier yields a mean translocation time
scales with the number of monomers asN2, i.e., the entropic
barrier does not modify the diffusive scaling. We supplem
this result with a numerical integration of the Fokker-Plan
equation that yields the complete distribution function
transit times. The Rouse model for the dynamics of aphan-
tom chainalso predicts a time of order ofN2 for the equili-
bration of the polymer. Since such equilibration is essen
to the use of the entropy function as the driving force,
internal consistency of the approach is in doubt. This is e
more so when considering self-avoiding polymers, where
relaxation times are much larger thanN2. Noting this contra-
diction, we proceed to numerical simulations in the rest
the paper.

In Sec. III, we report on simulations of a phantom cha
in one dimension. In this case, the relaxation time of
chain scales asN2, and is thus not inconsistent with th
predictions of the Brownian particle analogy. We do inde
find that the probability density function for translocatio
times ~once appropriately scaled! is quite similar to that ob-
tained from solving the Fokker-Planck equation. Howev
the mean translocation time, while appearing to scale asN2,
has a much larger prefactor, which depends on the size o
hole. Unfortunately, in one dimension, self-avoiding cha
are fully stretched, and do not provide a fair model for tra
location of a coiled polymer.

Two-dimensional polymers as described in Sec. IV,
ideal for studying the scaling of translocation times in a m
complex situation. On the one hand simulations are fa
and easier than in three dimensions, while on the other h
the effects of self avoidance are more pronounced. Our si
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lations for phantom chains reproduce the trends observe
one dimension, i.e., a mean translocation time scaling asN2

with a larger prefactor. However, once self avoidance is
cluded, the translocation times increase dramatically,
mean translocation time appearing to scale asNa, with a
'2.5, which is the exponent for Rouse relaxation of se
avoiding chains in two dimensions. We find that~for the
parameters of our model! translocation times are roughly te
times longer than typical equilibration times. Thus, trans
cation is indeed much slower than diffusion of the polym
but appears to scale with the same exponent.

Consequences of this observation are discussed in Se
The observed nontrivial scaling of translocation times is
clear indication of the failure of the Brownian picture for th
dynamics of the translocation coordinate. Instead, we sug
that the anomalous dynamics of a specified monomer i
chain provides a better analogy. Following scaling argume
used for the latter, we predict anomalous behaviors for
translocation coordinates(t). In particular, fluctuations ins
are predicted to scale astz, while in the presence of a
chemical-potentialDm, the pulling velocity is predicted to
behave asu}DmNh, with z'0.46, andh'20.18 for Rouse
dynamics in three dimensions.

II. BROWNIAN TRANSLOCATION

The reduction of the translocation problem to the Brow
ian dynamics of a single coordinate was introduced in R
@17#, and further explored in Ref.@10#. Here, we review the
main features of this approximation and its consequen
Consider a polymer moving through a pore in a membra
where the hole is so narrow that only a single strand
polymer may pass through.~Thus, the parameter describin
the width of the hole in Fig. 1 isw51.! The progress of the
polymer may be tracked by following the numbers of the
monomer, which is located in the hole at a particular time,
depicted in Fig. 1. Let us denote the probability of monom
s being in the hole at timet by p(s,t). As the monomers
moves forward or backward through the hole a distancea ~of
order of the typical separation between monomers! the rel-
evant monomer number increases or decreases by u

FIG. 1. Schematic representation of aN-monomer polymer in
the process of translocation through a hole of sizew. The ‘‘translo-
cation coordinate’’s is the number of monomers on one side.
2-2
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ANOMALOUS DYNAMICS OF TRANSLOCATION PHYSICAL REVIEW E65 011802
Treatings as a continuous variable, we may write a contin
ity equation for the probability as

]p

]t
1

] j

]s
50, ~1!

where j (s,t) is the probability current.
The central difficulty is to find an appropriate expressi

for j that correctly reflects the correlated motion of the wh
polymer. If the progress of the polymer is sufficiently slo
for the segments on the two sides to come to equilibrium,
monomer at the hole experiences a mean force that ca
obtained from the variations of a constrained free-ene
F(s). How such a force may be used to deduce the dynam
of the monomer label is not clear. The analogy to Brown
motion suggests that the rate of change ofs is related to the
force by a mobilitym. Since the polymer fluctuates back an
forth between the two sides, there must also be a stoch
element that may be represented by a random force. If th
are no correlations in this force at different times~as in the
standard Langevin formulation for a Brownian particle!,
there is a current that depends on the local probability d
sity as

j 52DS ]p

]s
1

p

kBT

]F

]s D , ~2!

where the diffusion parameterD is proportional to the vari-
ance of the stochastic force@18#. As in standard Brownian
processes, the above equation assumes that the mobil
related to the temperatureT by m5D/kBT, wherekB is the
Boltzmann constant. No similar restriction is made in R
@13#, which obtains the diffusion term from considerations
symmetry and locality. However, as elaborated in Sec. V,
assumption of locality need not be valid in this case, sin
the true dynamics ofs must reflect the collective behavior o
the whole polymer.

Calculating the restricted free-energyF(s) is reasonably
straightforward, and equivalent to finding the number of p
sible configurations of a polymer attached at one point to
impenetrable barrier. The exact solution is known for t
case of one-dimensional discrete random walks with fix
step length~see, e.g., Ref.@19#!: It can be shown that~in the
large N limit ! the number ofN-step walks that start at
boundary and never return to it isA2/pN32N. Thus, the
number of configurations withs monomers on the right an
N2s monomers on the left has thes-dependenceA/@(N
2s)s#g, whereA is independent ofs andg51/2, giving the
s-dependent part of the free energy as

F5gkBT ln@~N2s!s#. ~3!

To this result we add the conditions that the first monom
can never be withdrawn from the hole, and that after theNth
monomer crosses the wall, the polymer will no longer retu
to it. Figure 2 depicts the resulting free energy for the cas
N51000. The two conditions are shown by two vertical lin
on the sides of the graph: the line on the left~infinite barrier!
signifies our assumption that the first monomer may ne
cross back through the hole, while the vertical line on
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right (2`) represents the escape of a polymer that
crossed the barrier. The numbers of configurations of po
mers in higher-space dimensionsd, whether phantom or sel
avoiding ~SA!, cannot be calculated exactly. However, it
known that they have the same dependence on the poly
length @20#, with g in Eq. ~3! replaced by a number tha
depends ond (g51/2 for phantom chains!. Thus, the
s-dependent part of the free energy will have a different pr
actor, but the logarithmic dependence remains unchange

By inserting Eq.~3! into Eqs.~1! and~2!, we reduce poly-
mer translocation to a standard single-particle problem
escape over a potential barrier. It is interesting to note tha
we rescale the variables according tos→sN, t→tD/N2, all
N andD dependence is eliminated from the equation, res
ing in

]p

]t
5

]2p

]s2 1g
]

]sS 122s

~12s!s
pD . ~4!

The solution to this dimensionless equation may be c
verted back to real time by multiplying thet axis byN2/D.
Thus, under the assumptions listed above, the escape tim
a particle, and thus the translocation time of a polymer
proportional toN2/D. Note that this conclusion isindepen-
dentof the value of the parameterg, and remains valid even
for a SA chain in whichg has a different value.

The problem of escape from adeepwell in one dimension
was considered by Kramers@21#. Assuming that the escap
rate is slow, i.e., if at every moment in time the probabil
distribution of a particle in the well can be represented by
equilibrium ~Boltzmann! weight, Kramers’ method enable
an analytic calculation of the mean escape time. Apply
Kramers’ formula to the logarithmic potential of the pro
lem, one finds@17,10# ~for g51/2) that the mean escap
time t is (p2/16)N2/D. The distribution of escape times i
Kramers’ formula is by construction a simple exponenti
Equation~4! may also be solved numerically, by placing
delta function at the left edge of the potential depicted in F
2 at t50 and integrating in time. There are some differenc
between the numerical solution to Eq.~4!, and the Kramers

FIG. 2. The entropic potential barrier found in the single va
able equivalent to the polymer translocation problem.
2-3
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JEFFREY CHUANG, YACOV KANTOR, AND MEHRAN KARDAR PHYSICAL REVIEW E65 011802
solution, e.g., the former decays to zero fort→0 due to the
time it takes for the delta function to diffuse out of the we
However, the mean escape time for the numerical solutio
t'0.6N2/D, which almost coincides with the approxima
Kramers result. The distribution of escape times calcula
from integrating the Fokker-Planck equation is shown by
dashed line in Fig. 3.

If the potential barrier is absent altogether, then the dis
bution of escape times may again be calculated~e.g., by
numerical integration!, and is depicted by the solid line i
Fig. 3. The mean escape time in this case ist'0.5 ~in re-
duced units ofN2/D). There is only a 20% difference be
tween the mean escape times of the problems with and w
out the logarithmic potential barrier. More strikingly, there
little difference in the distribution of times with or without
barrier. ~This barrierless version of the problem can
thought of as describing the adsorption of a particle star
at a unit distance from a sink. From a polymer perspective
corresponds to the passage of a polymer through aring—
although the polymer must pass through a constricted sp
its free ends may have any possible configuration.! In view
of the minute effect of the entropic potential, the notion
‘‘escape over a barrier’’ does not provide a particularly u
ful analogy.

A central assumption in the reduction of the polym
problem to a single coordinate is that translocation is sl
Specifically, it should be slow enough that the polymer s
ments on the two sides of the membrane are in equilibrium
every value ofs. We may check for the self consistency
this assumption: The equilibration time of a free polym
may be estimated@9# as the time required for it to diffuse it
own radius of gyrationRg . Under Rouse dynamics~which
ignores hydrodynamic effects!, the diffusivity of the center
of mass of anN-monomer polymer is reduced toD/N, where
D is the diffusion constant of a single monomer, resulting
an equilibration time of order ofRg

2N/D. For phantom poly-

FIG. 3. Probability distribution of escape times measured
reduced, dimensionless, units. The dashed curve corresponds
logarithmic potential depicted in Fig. 2, while the solid line is in t
absence of the entropic barrier. The curves were obtained by
merical integration of the Fokker-Planck equation.
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2;N, and, consequently the equilibration time is

the same order (N2/D) as the mean passage time obtain
with Brownian translocation dynamics. Thus, the equilibriu
assumption is marginally~in!valid in this case. On the othe
hand, for self-avoiding polymersRg;Nn, where n50.75
and 0.59 for dimensionsd52 and 3, respectively. The re
sulting relaxation times (;N112n/D) are now longer than
the translocation times predicted (;N2/D) by Brownian dy-
namics, and consequently, the approximations involved
not self consistent. In the following sections, we try to ga
further insights into the problem by numerical simulations
the translocation of a polymer in one and two dimension

III. SIMULATIONS IN ONE DIMENSION

We begin by examining the translocation of aone-
dimensional phantompolymer via a Monte Carlo simulation
with Rouse-like dynamics as follows. Our model consists
a chain of N ‘‘atoms’’ placed on the sites of a one
dimensional lattice. No excluded volume interactions a
present, and the spatial distance between two neighbo
atoms~along the sequence of the chain! can be 0, 1, or 2
lattice spacings, i.e., the ‘‘bond’’ between adjacent atoms
a maximal length of 2. This represents a trivial implemen
tion of the fluctuating-bond method@22#. Initially, the first
atom of the chain is placed on, say, the right of the me
brane, while all other atoms are on the left.~We assume tha
the membrane is located between the coordinatesx50 and
x51 and, consequently, the first atom is initially placed
x51, while the rest of the atoms are atx<0.! During the
simulation, the first atom of the chain is never allowed
move to the left of the membrane. The ‘‘width’’w of the hole
is adjusted by changing the maximal number of bonds
lowed to be simultaneously present at the hole. An elem
tary move consists of randomly picking an atom and attem
ing to move it one lattice step in a randomly select
direction. If the configuration does not violate any of th
restrictions of the model it is accepted.N elementary atom
move attempts are defined as one Monte Carlo time unit

Each simulation is terminated when all monomers are
one side. Figure 4 depicts the distribution of translocat
times of such phantom chains measured for several c
lengths, and for unit width of the hole. If we normalize th
time for eachN by the mean translocation timet for that
length, we observe that the resulting curves are quite sim
and closely resemble the theoretical curve obtained assum
a Brownian translocation coordinate. While the similar
may appear to support this picture, we should note that s
the distribution is constrained to vanish at both short a
long times, qualitative similarities are dubious. Moreov
the absolute values of the mean translocation timet, as de-
picted in Fig. 5, are significantly larger than the estima
from Brownian dynamics. This log-log plot indicates that t
apparent exponent is somewhat larger than two for smalN,
and only gradually approaches the scaling formt;N2.
However, the prefactor of the power law forN5256 is
roughly two orders of magnitude larger than expected fo
Brownian translocation coordinate. Such discrepancy sho
not be surprising—the translocation time predicted by t

n
the

u-
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ANOMALOUS DYNAMICS OF TRANSLOCATION PHYSICAL REVIEW E65 011802
model is similar to the time required for a polymer to diffu
its own radius of gyration. It is reasonable to expect t
passage through a narrow hole should be slower than d
sion without a wall.

Not surprisingly, translocation times are strongly effect
by the widthw of the hole, as indicated in Fig. 6. Whenw
reaches the sizeRg of the chain (;AN) the translocation
time should become independent ofw. This is supported by
the saturation of the rescaled timest/N2 at roughly the same
value of w/Rg;w/AN in this figure. For small holes, th
translocation times are strongly dependent on the hole s

FIG. 4. Probability density of translocation times for on
dimensional phantom polymers. Solid, dotted, and dashed lines
respond to polymer lengthsN532, 64, and 128, respectively, an
were extracted from 10 000 simulations, each. The times have
normalized by their respective mean translocation timet(N) in
each case. The continuous curve corresponds to the solution o
Fokker-Planck equation in the single-particle approximation.

FIG. 5. Logarithmic plot of the mean translocation timet as a
function of chain lengthN for a one-dimensional phantom polyme
Each data point represents an average over 10 000 realizations
solid line has slope 2.
01180
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and show some indications of collapse onto a univer
curve, but theN2 dependence is not as clear as for the wid
holes.

IV. SIMULATIONS IN TWO DIMENSIONS

Excluded volume effects drastically modify the shape a
properties of the one-dimensional phantom polymer con
ered in the previous section. The chain becomes stretc
and its dynamics are then limited by reptation@9#. To study
the effects of self avoidance on translocation in the coi
state, higher-dimensional simulations are necessary. T
dimensional polymers are ideally suited to this purpose
the dual reasons that excluded volume effects are more
parent, while computation times are shorter than in the thr
dimensional case.

As in the one-dimensional~1D! system, we employ a
fluctuating-bond model for simulations@22#, implementing
Rouse-like dynamics for linear polymers of several differe
lengthsN. Simulations were performed both with and with
out excluded volume constraints. In this model, the mo
mers of the polymer lie on a 2D square lattice. Random
motion is simulated through a series of elementary move
single monomers. In each move, a monomer is selected
domly and then moved a single lattice unit in one of t
1x,2x,1y, or 2y directions. If the move violates any o
several constraints, it is rejected. For phantom chains, bo
have a maximal allowed length ofA10 lattice units. For ex-
cluded volume chains, in addition, the distance between
two monomers is constrained to be at least two lattice un
For excluded volume chains, these constraints also pre
the chain from crossing itself@22#. The wall has a thickness
of three units and the hole has a width of two lattice units.
these sizes, only one monomer may be in the hole at a t
but the hole is large enough that translocation may oc
with the given move set. EachN elementary atom move
attempts are defined as one Monte Carlo time unit.

or-

en

the

he

FIG. 6. Dependence of the mean translocation timet on the
width of the holew, for N53, 4, 6, 8, . . . 91,128, and 181. The
times have been normalized byN2 to focus on the behavior of the
prefactor. Each curve corresponds to fixedN, and is obtained by
averaging over 1,000 cases.
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JEFFREY CHUANG, YACOV KANTOR, AND MEHRAN KARDAR PHYSICAL REVIEW E65 011802
The simulation begins by placing the first monomer at
hole, while the remainingN21 monomers are in a random
conformation on the left side of the wall.~To generate the
initial random configuration, the chain is first allowed
fluctuate subject to the constraints of impermeability of
wall and fixed location of the first monomer. The fluctuati
time is 20N2, which should be sufficient to randomize th
initial condition for the purposes of our simulations, at t
length scales employed. In any case, the time it takes
translocation is many times longer than the Rouse relaxa
time, and any initial condition effects will be transients!
Once the initial configuration has been established, the p
mer is allowed to move in accordance with the restrictions
the model. We measure the time between the beginnin
the translocation, and the moment when the last mono
enters the hole. Because only one monomer may lie in
aperture at a time, this condition is equivalent to the co
plete translocation of the polymer through the hole. As in
one-dimensional case, the first monomer is not allowed
move to the left of the hole.

Translocation times were calculated for a number of d
ferent chain lengthsN, with several thousand runs at ea
length.~The number of runs decreases with increasingN, due
to CPU limitations.! Theses results are shown for both pha
tom and self-avoiding chains in Fig. 7. Errorbars indicate
standard deviation of translocation times over runs.

We then attempted to fit the results to a dynamic sca
form, with the effective exponent depicted in Fig. 8. T
points are a plot of the local exponenta, assuming a power
law t;Na, as determined from two neighboring polym
lengths N1 and N2 via the formula a(AN1N2)
5 log@t(N2)/t(N1)#/log(N2 /N1). The exponenta for the ex-
cluded volume translocation approaches an asymptotic l
that is definitely larger than two. This clearly indicates th
excluded volume effects are inconsistent with Brownian
namics for the translocation coordinate. The data for
translocation times of a phantom polymer~in which the self-

FIG. 7. Logarithmic plot of the mean translocation timet as a
function of chain lengthN, for two-dimensional phantom and ex
cluded volume polymers. Errorbars indicate the standard devia
over runs.
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avoiding constraint of the bond-fluctuation model is r
moved! are also included in this figure. The power-law e
ponent in this case asymptotically approaches a value c
to 2, in agreement with the one-dimensional results, and c
sistent with Brownian dynamics. At eachN, the uncertainty
in the average translocation time~equal to the standard de
viation of t(N) over runs divided by the square root of th
number of runs! has been translated into an uncertainty in t
local power law. This uncertainty, as depicted by the er
bars, is quite small, indicating that our conclusion is not d
to statistical fluctuations.

The observed scaling laws for self-avoiding and phant
polymers in fact agree with the exponents expected theo
cally for Rouse relaxation in the absence of a wall. As sta
previously, translocation across the barrier requires t
minimally, the chain diffuses a distance equal to its radius
gyration. The time for such diffusion istR;Rg

2N/D
;N112n. For a self-avoiding walk in two dimensions,n
53/4 andtR;N2.5, while for a phantom chain,n is replaced
by 1/2, leading to the relationshiptR;N2. For comparison,
Fig. 8 also shows the derived power-law exponents fr
simulations of simple diffusion in the absence of a wall. F
an excluded volume chain, we approach the scalingt;N2.5,
while for the phantom chaint;N2. The latter results were
generated as follows: We started with the same type of r
dom initial configurations~generated by annealing near a
impermeable wall! as for the translocation case, and aga
imposed the constraint that the first monomer cannot pas
the left side of an imaginary wall. The other monomers, ho
ever, are allowed to diffuse without feeling this wall. Th
simulation was stopped when all monomers moved to
right of the imaginary wall.

n

FIG. 8. The effective power-law exponents for translocation a
diffusion times as a function of lengthN for 2D polymers. For both
translocation and free diffusion, self-avoiding chains exhibit a d
namic exponent that approaches 2.5, equal to 112n given thed
52 swelling exponent ofn53/4. For phantom chains, the expone
is noticeably smaller, and approaches two. In both the self-avoid
and phantom cases, the asymptotic exponent for translocation
nearly equal to that for Rouse relaxation.
2-6
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ANOMALOUS DYNAMICS OF TRANSLOCATION PHYSICAL REVIEW E65 011802
At least in these examples, we find that the scaling
translocation times is the same as that for equilibration of
polymer in the absence of a wall. However, the constrain
passing through the hole must clearly slow down the dyna
ics of the polymer compared to the case of free diffus
over a similar distance. This slowdown must then be
flected in an overall prefactor that determines how mu
slower translocation is relative to pure diffusion. The da
that address this issue are displayed in Fig. 9. The ratio
crossing times for translocation compared to pure diffus
~as described in the previous paragraph! are plotted for both
self-avoiding and phantom chains. For self-avoiding po
mers, the hole slows down the chain by a factor of abou
while for phantom chains the ratio is about 13. These nu
bers are roughlyN independent forN.10 ~for excluded vol-
ume chains! andN.50 ~for phantom chains!. It is interesting
to note that translocation slows down the phantom ch
more than it does the excluded volume chain. However, th
ratios should not be taken too seriously, since for more r
istic systems such as the translocation of DNA molecu
through a cell membrane, the details of the shape and in
action forces at the pore play a significant role@3,13,4#.

V. DISCUSSION

The central result of this paper is the nontrivial scaling
the mean translocation timet for unforced passage of a poly
mer through a hole with its lengthN. For the diffusive dy-
namics of a self-avoiding chain ind52, numerical simula-
tions indicatet;N2.5. By extension, we expectt;Na with
a5112n for diffusive dynamics. Possibly even more ge
erally for other types of dynamicsa5nz, where the swelling
exponentn relates the radius of gyration of the polymer to
length by Rg;Nn, while its relaxation time scales ast r

;Rg
z with the dynamic exponentz.

The natural parameter for following the progress of t

FIG. 9. Comparison of simulation results for diffusion through
hole that may fit one monomer versus free diffusion. Transloca
times through the hole are larger than the free diffusion for b
phantom and self-avoiding chains. In both cases, the ratio of th
times levels off to a constant.
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translocation process is the labels(t) for the monomer in the
hole at timet ~see Fig. 1!. A commonly used analogy is tha
this ‘‘reaction coordinate’’ undergoes stochastic motion, as
a Brownian particle in a force field@10,15,13#. For unforced
translocation~with or without the inclusion of an entropic
barrier!, such approaches lead tot;N2, which is inconsis-
tent with our numerical results, except for the case of diffu
ing phantom polymers. Such scaling is also at odds with
expectation that constraining the polymer to pass throug
hole should slow down its dynamics compared to free m
tion over a similar distance. The numerically observed sc
ing is thus indicative ofanomalous dynamicsof the translo-
cation coordinates(t)—we propose instead an alternativ
analogy that incorporates this observation.

The dynamics of the polymer is the result of cooperat
motions of its many monomers. When described by jus
single variable, say the translocation coordinate, the effec
the other degrees of freedom is to exert correlated for
leading to anomalous dynamics. This is best illustrated
the well-studied case of the dynamics of a single monome

a polymer: Consider the positionrW(t) of a particular atom in
the background of all the other monomers. The dynamics
rW(t) has indeed been studied by numerical, analytical,
experimental methods@23#; its anomalous features are eas
captured by the following scaling argument: For short tim
we expect that the squared change in the position has a
ing form ^Dr 2(t)&;t2z̃, with no dependence onN since the
monomer does not yet feel any effects from the finite size
the polymer. At a time of the order of the relaxation timet r
for the whole chain, the monomer should have moved b
distance of the order of its radius of gyration, givingRg

2

;t r
2z̃ . Sincet r;Rg

z , we immediately obtain the exponen

z̃51/z describing the anomalous fluctuations of the specifi
monomer at short times.

We now adapt a similar scaling argument to describe
squared change in the translocation coordinate, assum
^Ds2(t)&;t2z at short times. This behavior should satura
when s becomes of the order of the chain length in a tim
t;Rg

z;Nnz ~assuming that translocation times always sc
in the same way as equilibration times!. Substituting this in
the former equation allows us to identify the exponentz
51/(zn) for anomalous dynamics of the translocation co
dinate. For the case of diffusive polymer dynamics, we th
obtain z51/(112n) resulting in z52/5 and z'0.46 for
self-avoiding chains in two and three dimensions, resp
tively; i.e., in this case, the fluctuations aresubdiffusive. If
we naively use the Zimm exponentz5d describing the re-
laxation of polymers in hydrodynamic flows ind dimensions,
we obtainz(d52)52/3, whilez(d53)'0.56, i.e., the fluc-
tuations are predicted to besuperdiffusivein this case. The
usual origin of the speed up of polymer dynamics in a fluid
attributable to the velocity flow field set up by the oth
monomers. It is doubtful that using the bulk Zimm expone
remains valid for flows that must vanish in the vicinity of th
wall. Thus, the above prediction of superdiffusive behav
should not be taken seriously prior to a proper analysis of
hydrodynamic correlations in the vicinity of the wall.
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JEFFREY CHUANG, YACOV KANTOR, AND MEHRAN KARDAR PHYSICAL REVIEW E65 011802
It is experimentally hard to directly probe the motion
the translocation coordinate. The quantity that is easily m
sured in experiments@4# is the distribution of the transloca
tion times in the presence of a forceintroduced via a
chemical-potential differenceDm for monomers on the two
sides of the wall. While our results so far were in the abse
of such a driving force, anomalous dynamics has con
quences for the length dependence of the forced velocity.
us first recall the arguments for the drift velocityv of a
polymer in a forceFW : Scaling considerations suggestv(F)
;(Rg /t r)f(FRg /kBT);Nn(12z)f(FNn), where f is a
scaling function depending on the ratio of two quantit
having dimensions of energy. The proportionality of the v
locity to the force requires a linear scaling function, leadi
to a mobility v/F;N2n(z22). For Rouse and Zimm dynam
ics, this leads to the well-known scalings of mobility as 1N
and 1/Rg

d22 , respectively. Similarly, for the pulling velocity

u[ ṡ of the translocation coordinate, scaling suggestsu
;N/tf(DmN/kBT);N22znDm. Only for the case of diffu-
sive dynamics of a phantom chain is this velocity indep
dent ofN. The anomalous slowdown due to Rouse dynam
leads to a mobility that scales asN21/2 in d52, andN20.18 in
d53. By contrast, hydrodynamic speeding up with Zim
dynamic exponents leads to a mobility that grows asN1/2 and
N0.23 in two and three dimensions, respectively. Once mo
the latter results are not to be taken seriously without
hydrodynamic calculations in the presence of a wall. Exp
ments so far@4# do not indicate anomalous scaling, but t
size range may not be sufficient to detect the rather sm
exponent.

In the experiments of Ref.@4#, the pulling velocity of
an

s
l.

l.
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single-stranded DNA through a nanopore was observed t
independent ofN in the range of 10 to 100 base pairs, a
though it exhibited a nonlinear dependence on the app
voltage. While the latter is attributed to the strong intera
tions of DNA with the pore, it is intriguing to inquire if
nonlinearities could be intrinsic to translocation dynamics.
particular, in the previous paragraph we assumed that
function f(DmN/kBT) is linear in its argument. While this
is likely true for small applied force, it may well cross ove
to a nonlinear form at larger values of its argument. If t
pulling velocity is then independent ofN, it acquires the
nonlinear formu;(Dm)zn21. This possibility provides im-
petus for further numerical studies of forced translocation

We conclude by listing two other avenues of potent
exploration. The first is to note that the distribution of tran
location times should also be modified by the anomalo
dynamics, potentially to include power-law tails that are d
tinct from the exponential tails in Fig. 3@24#. Secondly, it
may be possible to construct an experimental system clos
our two-dimensional simulations, using vibrated granu
chains in a variation on the setup used in Ref.@25#, with a
chain that is threaded through a hole in a wall.
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@14# A. Baumgärtner and J. Skolnick, Phys. Rev. Lett.74, 2142

~1995!.
@15# P. J. Park and W. Sung, J. Chem. Phys.108, 3013~1998!.
@16# P. J. Park and W. Sung, J. Chem. Phys.111, 5259~1999!; K. L.

Sebastian, Phys. Rev. E62, 1128~2000!.
@17# W. Sung and P. J. Park, Phys. Rev. Lett.77, 783 ~1996!.
@18# In Ref. @17#, it is noted that the parameterD may depend on

the monomer number, and that if taken as a constant, it sh
scale with the number of monomersN. However, we could not
reproduce the proposed dependence onN.

@19# S. Chandrasekhar, Rev. Mod. Phys.15, 1 ~1943!.
@20# E. Eisenriegler,Polymers Near Surfaces~World Scientific,

Singapore, 1993!; N. Madras and G. Slade,Self-Avoiding Walk
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